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ABSTRACT: We obtain conditions for permanence (i.e. uniform persistence) in
some diffusive Lotka-Volterra systems modeling three interacting species. Some of
the results are based on the Hale-Waltman acyclicity theorem, others on average
Lyapunov functions. All the results on permanence use hypotheses involving the
signs of the principal eigenvalues of associated linear elliptic operators.
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1. INTRODUCTION.

A fundamental problem in biology is to determine conditions under which all species
in a system of interacting species survive in the long term. The classical approach has
often been to consider the global or asymptotic stability of an interior equilibrium.
However, this places inappropriately strong restrictions on the asymptotic behavior
of orbits, and fairly recently there has been a considerable amount of discussion of
an alternative criterion, that of permanence (or uniform persistence), which allows
arbitrary asymptotic behavior so long as all species densities are in a certain uniform
sense eventually bounded away from zero; for background information see [22}, [27],
and [42]. The terms permanence and uniform persistence are both used to describe
this concept, with permanence more often used by Europeans and uniform persistence
more often used by North Americans. We have used the term permanence here to
be consistent with earlier work we have done on the subject [8,23-27]. Some authors
use uniform persistence to mean that densities are eventually bounded away from
zero in a uniform sense and use permanence to mean uniform persistence together
with dissipativity, so that densities are also eventually bounded above. In cases where
different notations and terminology are currently in use we have generally followed the
usage in [27]. The conditions for permanence can be expressed as the requirement that
the boundary of the phase space (corresponding to zero density of at least one species)
should be a repeller, and this raises some mathematical problems with a somewhat
different flavor from that of global or asymptotic stability. When species dispersal
is taken into account, a common model is a reaction-diffusion system, and a direct
stability analysis is effectively ruled out except in the very simplest of cases. Indeed
it is often difficult even to establish the existence of an interior equilibrium. Our aim
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The triple (Y, 7, IR,) is said to be a semiflowif 7 : ¥ x IRy — Y is continuous and
satisfies '

(i) w(u,0)=uva

() 7(r(u,t)s) = 7(uwt+s)  (steRy)
for all 4 € Y. For convenience we often write w(u,t) = u.t.

A solution ¢ through u is a continuous map ¢ : R — Y such that ¢(0) = u
and 1r(¢(1'),t) = $(t+7) for t € Ry, v € IR. The range of ¢ is denoted by
4(u) and is called an orbit through u. We assume that the backward continuation
when it exists is unique. The forward orbit {u.t : ¢ > 0} through u is denoted
by v*(u) and the corresponding backward orbit (when it exists) by v~(u). Define

y*(U) = |J7*(u) and 4(U) analogously. Note that the existence of a backward
uEU

continuation is not assured, so an assertion as to its existence (for example implicitly

contained in Theorem (2.1) below) is a strong restriction on the semiflow with wide

ranging consequences.

A set I/ is said to be forward invariant if v+(U) C Uand invariant if y(U) C U.
The omega-limit set of u is denoted by w(), and when there is an orbit through u,
its alpha-limit set is denoted by a(u). Also w(U) is defined by taking unions. This
notation differs from that used in [19] but is more convenient in the present context;
see [27]. The stable and unstable sets of a compact invariant set A are defined as
follows (with the obvious restriction on the existence of an orbit for the second):

We(A) ={u:u €Y, w(u)#0, w(u)CA},
W¥A)={u:ueY, ofu)#0, ofu)C A}

The semiflow is said to be dissipative if there is 2 bounded set U such that lun d(u t,U)
=0 for all u € Y. L'he set U is said to be a global attractor il 1t 18 compacn nvariant

and hmE(Vt U) = 0 for all bounded V.

Theorem 2.1. (Billoti and LaSalle [2]) Let ¥ be complete and suppose that the
semiflow is dissipative. Assume that there is a o > 0 such that =(-,t) is compact for
t > to. Then there is a non-empty global attractor, A say.

The concept of permanence in a semiflow context is next considered. It will be
assumed that Y = Y U 8Y; where Y, is open, and that Y5, 8Y; are forward invariant.
In relation to the remarks in the introduction, 8Yp will consist of the states with at
least one species absent. '

Definition 2.2. The semiflow is said to be permanent if there exists a bounded set
U with d(U, 8Yp) > 0 such that tl_iglod(v.t,U) = 0 for all v € Ys.

If the requirement that U is bounded is removed then the semiflow is said to
be uniformly persistent. The results we shall use to establish permanence/uniform
persistence all require dissipativity and thus yield the stronger conclusion of perma-
nence rather than merely uniform persistence, so we shall use permanence as the basic
concept here.

The following definitions and theorem are taken from [19]. A set U C Yo is said
to be strongly bounded if it is bounded and d(U 9Yy) > 0. Ay is said to be a global
attractor relative to strongly bounded sets if it is a compact invariant subset of ¥p and

tli)rBoE(U.t, Ap) = 0 for all strongly bounded U.
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Theorem 2.3. Assume that the conditions of Theorem 2.1 hold, and let Y; and 8Y;
be defined as above. Then if permanence holds, there are global attractors A, As
for mp (that is 7 restricted to dYp), and a global attractor A, relative to strongly
bounded sets.

We come now to the first abstract permanence theorem which is based on the
idea of using a weakened version of a Liapunov function P called here an ‘average’
Liapunov function. Take an e-neighborhood B(A,¢€) of the global attractor A of
Theorem 2.1, set X = cln({B(A,¢),[1,00)) and let S = X N 8Yp. In the reaction-
diffusion context S, X are compact, and this is assumed in the following result. In
this form it is given in [23); see also the review article [27] for further background.
Theorem 2.4. Assume that the conditions of Theorem 2.1 hold, and let X, S be
as defined above. Suppose that P : X\S — IR, is continuous, strictly positive and
bounded, and for u € S define

aft,u) = liminf P(v.t)/P(v).

v e X\S

Then the semiflow is permanent if

sup a(t,u) >
>0

{1 (u € w(9))
0 (ueS)

The second abstract permanence theorem exploits a knowledge of the geometry
of the flow in @Y,. The discussion below follows [19], and we again refer the reader to
[27] for the background. Y will henceforth be assumed complete. We need to recall
some further terminology.

Let M be a non-empty invariant set. It is said to be an isolated invariant set if it
has a neighborhood U, called an isolating neighborhood, such that M is the maximal

invariant subset of I/. The set w(dY}) is said to be isolated if it has a finite covering
k

M = | M, by pairwise disjoint compact isolated invariant sets M, which are isolated
n=1
both for 75 and 7. M is then called an isolated covering.

Let M, N be not necessarily distinct isolated invariant sets. Then M is said to be
chained to N, written M — N, if there exists u € MU N with u € W¥(M)NW*(N).
A finite sequence of isolated invariant sets My, ..., My is called a chain if My — Mp —

.. — MM, — M, if k = 1). The chain is a cycle if My = M;. The set w(0Ys)
k

is said to be acyclic if there exists an isolated covering U M, such that no subset of
. n=}

the M, form a cycle.

Theorem 2.5. (Hale and Waltman [19]) Assume that the conditions of Theorem 2.1
hold. Suppose that:

(i) w(9Y) is isolated and acyclic;
(ii) W (M,)NYy =0 foralln

Then the semiflow is permanent.
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One could view Theorems 2.4 and 2.5 as cstablishing uniform persistence under
the previous assumption of dissipalivity in Theorem 2.1. However, dissipativity is
itself a hypothesis of the original formulations of these theorems, so the stronger
conclusion of permanence is automatic. Thus it is appropriate to state the theorems
in terms of permanence rather than to weaken their conclusions just to preserve the
use of the terminology of uniform persistence.

Finally we discuss how the reaction-diffusion system (1.1) fits into the above ab-
stract setting. The first step is to notice that (1.1) induces a semiflow on certain
C* spaces; a convenient reference here is [38]. The general background on semiflows
generated by reaction-diffusion equations is treated in {20]. Backward uniqueness of
orbits in reaction-diffusion systems is shown in [14]. More background material with
a specific focus on permanence is given in [27], [8].

As usual C* will denote sets of k-times differentiable functions (from Q0 into IR™).
We shall also use the Banach spaces C¥({1), where the sup norm on functions and
the appropriate derivatives is imposed. The norms will be denoted by || - ||¢, and
the closed subspaces of functions vanishing on 89 by C§(Q?). C%(f0) will denote the
positive cones with respect to the usual ordering; note that these sets are invariant
(in view of the form of the equations (1.1)) on the maximal interval of existence of
orbits. The following conditions will be imposed on the system (1.1).

(H1) (a) pi>0 for i=1,..,n.
(b) © ¢ IR™ is bounded and open, with 89 uniformly C3** for some a > 0.
(c) fieC¥iny, R").

(H2)  Uniformly boundedness in C2, (01). Given f§ > 0, there exists B(f3) such that

W AAN A Ll VU . o e :'-
[ ¥AY) U & 77 SR U &) e v

(H3) Dissipativity in C9, (). There exists -y such that; given ug € C3,(00), there is
a t(ug) such that || u(t) [o< 7 for ¢ = t(uo).

Theorem 2.6. Let (I11)-(I13) hold. Then the reaction-diffusion system (1.1) gen-
erates a semiflow on CQ,(Q), and its restriction to C}, (1) is also a semiflow. Dis-
sipativity in Cg, (%) holds. Also, m(-,1) is a compact operator on C,(Q) for every
t > 0. There is a bounded set Uy in C2(f2) such that if U C C},(%) is bounded, then
UtcU;fort > 1.

We note that it follows from this theorem together with Theorem 2.1 that thereis a
global attractor Ain C¢,(Q), and that as previously asserted X = clw(B(A,¢), [1,00))
is compact in CJ,(f?) and forward invariant.

- n
-

In the sequel we shall take Y = C},(0), so that Theorem 2.6 yields an appropri-
ate metric space for the application of Theorems 2.4 and 2.5. As they stand these
theorems do not quite yield permanence in the sense of Definition 1.1. However,
the existence of the global attractor Ag relative to strongly bounded sets assured by
Theorem 2.3 enables us to strengthen the result in a fairly simple manner:

Theorem 2.7. Suppose the conclusion of Theorem 2.4 or 2.5 hold. Then the system
(1.1) is permanent in the sense of Definition 1.1.

In outline the proof is based on the following ideas. Since we can work in C}, (1)
and since solutions of parabolic equations of the form w; = pAw + ¢(z,t)w satisfy a
version of the strong maximum principle, permanence implies that for each component
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u;(z,1) of an orbit u(t) starting in the interior of the positive cone, u;(z,t) > ei(z)
for t sufficiently large, where e;(z) > 0 on  and Je; /0n < 0 on 99; see {8] for a proof
and more discussion of this point.

3. DISSIPATIVITY AND THE DYNAMICS OF SUBSYSTEMS.

In this section we discuss some results on dissipativity and on the dynamics of two-
species subsystems which are required for the application of the abstract results of
the preceding section. We begin with a lemma on diffusive logistic equations which
follows from results in [6):

Lemma 3.1. Suppose that f € C*(Q¥ x Ry, R) with

f(20,0) >0 for some o € 02,

-g—l{;(m,w) <0 for (z,w) € @ x R, and

for some M > 0, f(x,M)<0forz el

Let A; be the positive principal eigenvalue for

—pp = Mf(z,00 inQ

P =0 on 0f. (3.1)

If Ay > 1 the problem

wy = pAw + flz,w)w  in Q x R,
w =0 on 09 x IR,

has no positive equilibria and all nonnegative solutions decay to zero as ¢t — co. If
A1 <1 then (3.2) has a unique positive equilibrium W which is a global attractor for
nontrivial nonnegative solutions to (3.2). We have 0 < @ < M on 2 and 8w/dn < 0
on 6.

The systems we consider can all be rescaled into the form

uy = i + (a,- — u; + Zb}juj-)u; on §) x R, :=1,2,3
i (3.3)
u=0 on 95} x IRy

where either 8;; < 0 for all 7,7, corresponding to the case of three competitors, or
§;; < 0fori = 1,2 but §3; > 0, corresponding to two competing prey and one predator.
By the smoothing properties of the semiflow it suffices to show dissipativity for (3.3)
in C3,.() (Theorem 2.6). We have

Lemma 3.2. If §;; <0 for i =1,2 and j # ¢ then the system (3.3) is dissipative in
C2,(%). Uniform boundedness then follows from semigroup theory via the variation
of parameters formula, and those properties extend to Cj,(Q) by the smoothing
properties of the semigroup.

(3.2)

Discussion: This result follows from the simplest arguments used in {8] to obtain the
corresponding results for two species. Specifically, for i = 1,2 the solution component
u; of (3.3) is a subsolution of the scalar problem wy = y;Aw; + (a; — w;)w; subject to
the same initial and boundary conditions, so u; < w;. By Lemma 3.1, w; < q; for ¢
sufficiently large. If 63; < 0 we may apply the same argument to ua. If not, we observe
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that sufficiently large ¢, ua is a subsolution of wa; = psAws+(az+8xa1+83282—ws)ws,
so eventually uz < wz < a3 + 83141 + 8a2a2. {These arguments generalize immediately
to more general systems whose nonlinearities satisfy the corresponding monotonicity
conditions.) Once dissipativity is established in C§, (), the remaining properties
follow as in [8].

We now turn to the problem of characterizing the dynamics of two species subsys-
tems. We shall consider first the case of two competitors since that system generates
a monotone semiflow. Specifically, if (u1,us) and (vy,ve) satisfy

Uy — ,UlAul - (01 - Uy — 512u2)ul 2 vy — i Avy ~ (01 —v - 6121?2)'02 ( 4)
— p2Aug — (az — Uz — Ezﬂh)uz < vy — paAvy — (Gz — Uy — 521'01)112

in 2 x R, with 0 < v, <u; and 0 € uy < v on @ x {0} and 90 x R* then uy > vy
and u; < v on ) x IR, with either strict inequality or v; = u;. The monotonicity
properties of the Lotka-Volterra competition model for two species are well known
and have been widely exploited; see for example [9,31,37] among many others. If
wy(z), Wa(x) satisfy

p1Aw; + (ay — w; — €19Wa)wy = 0 (3.5)
[AgAﬂjg -+ (az - Wy — Eq1lWy )E <40 ’
and vy, vy satisfy the competition system
vy = ;L,'A‘U,' + (a; - - e.-jvj)v;, J :7‘- 1 1=1,2 inQx H+ (3 6)

v =0 on 00 x IRy

with v;(z,0) = wy(z), va(z,0) = Wy(x) then vy, ve, w,, @, satisfy (3.4) (with the v’s
an tho lnﬂ\ con that e /m 4\ > an fm\ — I'r ﬂ\ and 'n..{'r f\ < 'm..('r\ ( 'n.J'r n\ far

_ —1r —

any t > 0. For any h > 0 the pairs (vl(a: t) vg(z t)) and (vl(:r t+ h), vg(m t+ R))
satisfy (3.6) with vi(z, h) > v1(=z,0) and ve(z, k) < va(z,0) so that we may use (3.4)
with v; = v(z,1), w = vi(z,t + k) to conclude that for ¢t > 0, vi(z,t + k) > »(z,1)
and vy(z,t + k) < vo(x,t) with equality only if v;,v, depend only on z. Hence, v,
is increasing in ¢ and v; is decreasing. If we also can find Wy, w, satisfying (3.5)
with the inequalities reversed and w; < ; then v; < W; and vy > w, so v; T vi(z)
and vy | vj(z) pointwise. Parabolic regularity then implies that the convergence is
actually in C%*(f2) so that (v}, v}) is an equilibrium of (3.6). This sort of argument is
discussed in more detail in the case of a scalar equation in [18], specifically Theorems
4.2 and 4.8; see also [7] and [9] for related ideas and results. We have now set the
stage for the proof of the following:

Lemma 3.3. Suppose that a; > p,p; for i = 1,2 where p; is the principal eigenvalue
for —A¢ = pd on §), ¢ = 0 on 9N, so that by Lemma 3.1 each of the problems
i = iy + (a; — wi)w;, i = 1,2, has a positive equilibrium %; which is a global
attractor for nonnegative nontrivial solutions. Suppose further that the principal
eigenvalue oy of the problem p;A¢ + (a1 — €12W2)¢ = 0¢ in N, ¢ = 0 on 99, is
positive and that (3.6) has no equilibria (uj,u}) with both components positive.
Under these hypotheses any solution (u1,uz) of (3.6) with u1(z,0) 2 0, us(z,0) £ 0
must approach (%;,0) as t — oo.

Proof: If (u,u;) satisfies (3.6) and u; 2 0, uwy # 0 at ¢t = 0 then u; > 0in Q
and Ou;/8n < 0 on 8N for any ¢ > 0 by the strong maximum principle. Also,
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ug is a subsolution to u, = puyAu + {az ~ u)u so for any € > 0 and ¢ sufficiently
large we have uz < (1 + ¢)@;. Choose € > 0 sufficiently small that the principal
eigenvalue o} of p; Ad+ (a1 — e12(1 + )iy )¢p = o is still positive and to large enough
that u; < (1 4 &)@, for t > #. Let w; = 6¢; where ¢; > 0 is the eigenfunction
corresponding to of and § > 0 will be chosen later and let Wy = (1 + &)ii;. It is
easy to verify that p, AW, + (ag — W, ~ €210, i, < 0 and for § > 0 sufficiently small
p1Awy + (a; — wy ~ e12W)w; > 0. Also, we have uz(z, %) < W, and for § small
enough u;(z,1p) > w;. Finally, we may take w, = 0 and w; = (1 + €)T;. We have
w; S uy SW and wy < ug < W, for t = to. Let vy,v; be the solution of (3.6) with
vi(z,to) = w;(x) and vy(z,to) = We(z). Then v; < uy < @; and vy > uy > wy =0
and v; T vj, vz | v; where (v},v3) is an equilibrium of (3.6). But by hypothesis (3.6)
has no equilibria with both components positive, so we must have v} = 0 and v} = 7.
It follows that uy — %; and us — 0 as £ — oo.

Corollary 3.4. The hypotheses of Lemma 3.3 are satisfied if
a1//L1 > (lz/'ltg Z £1 and E]g/LQ//L] <1l 621[11/[12 (37)

Discussion: Any equilibrium of (3.6) must satisfy piAu; + (a; — ui — e5u;)u; =
0, j # 4, £ = 1,2 which can be rewritten as Au; + (a;/pi — ui/ 1t — €550/ i yu; = 0, or
by taking w; = u;/p; as Aw; + (aifpi — w; — (gip;/piyw;)w; = 0, which is the form
treated in [4]. By Theorem 2.1 of [4] hypothesis (3.7) excludes equilibria positive in
both components. The eigenvalue problem p;A¢ + (a; — €12ii2)¢ = o¢ transforms
into A¢ 4 (a1/p1 — (€12p82/101)W2)d = (0/p11)¢ where Wy = T/ 11, and the positivity
o1/ and hence of o follows from Theorem 2.2 of [4].

Remark: Other conditions are also possible; see [4,7,9-11,15,30,31,33,35,37] for re-
lated results.

We now consider the case of a predator-prey system. The analysis is more delicate
than in the case of two competitors because monotonicity is lost. We shall proceed in
two steps. First, we shall establish some estimates that will completely characterize
the dynamics of the system in a special case and which give some information about
the location of possible equilibria in general. We shall then give a condition in terms
of those estimates which is sufficient for the existence of a coexistence state that is
a global attractor for positive solutions. We shall need some notation. Suppose that
m(z) € C*(R) and m(zo) > 0 for some zo € . Let A;(m(z)) be the principal positive
eigenvalue of

A = Im(z)p inQ

P =0 on Of. (3.8)

If Ay(m(x)) < 1 let 0]m] denote the unique positive solution of

Ab+(m(z)-0)0 =0 inQ
# =0 ondf.

It follows from Theorem 2.2 of [6] that § is monotone increasing .in m and the map
m > B(m) from L*(Q) to C'(Q) is continuous. It is easy to see that the positive
solution of pAu + (m(z) — u)u = 0 is pb[m/p] provided pri(m) < 1 and that the
positive solution of pAu + (m(z) — cBlm/p} — u)u = 0 is (g — e)f[m/p] if ¢ < p.

We shall consider systems of the form
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upe = Ay + (a1 = — quz)y

in 2 x R+ (3 9)
ug = paluz + (az — uz + Pru)us '
U =uz=0 on 60 x IR,.

Lemma 8.5. Suppose that (u},u}) is any coexistence state for (3.8). Assume that

p1ar > py and padi(as +(Bipr — arPips — enfim)0lar/m]) < 1,

3.10
and a1/ 2 azf/ps, ( )
p1 — aps —o Py > 0.
Then any coexistence equilibrium (uj, u3) satisfies
(m —arps — alﬂllll)o[al/fll] < ui < mblar/p]
(3.11)

pab((as + (Bipa — crPrpa — ar fip)0ar /i) ps] < uj < (pa 4 Prpn)flar/ ]

and the set of pairs (u;,us) satisfying (3.11) contains a global attractor for nontrivial
nonnegative solutions.

Remark: Hypothesis (3.10) implies that 3 (aa+ B1110[e1/p1]) < 1; the hypothesis
is needed for the existence of the equilibrium solutions 8[-] > 0 of scalar equations
used in (3.11). The second inequality in (3.11) may be simplified with some loss of
precision by noting that since fip — e1fips — 1 fipy > 0,

0las/ps) < 0[(as + (Bipa — arfaps — B2 pa)0ar/ p1])/ pa)-

The lower bound on u3 in (3.11) could be used to obtain a stronger upper bound
on uj, namely

uj < piblay — erpaflas + (Bipr — enfipa — en fpn)0[ar /] / pal /]

< mblar/m].

In principle the estimation process could be further refined but the estimates become
very complicated.

Proof. Recall that uf[m/p] is a global attractor for nonnegative nontrivial solutions
of v, = pAv 4 (m(z) ~ v)v under Dirichlet boundary conditions so if » is any solution
and u < v then for any € > 0 we have u < (1+¢£)pf[m/y] for ¢ sufficiently large. It will
be convenient to write u —< pm/p] to denote this, and similarly u —> pb[m/p]
if for any € > 0 and t sufficiently large we have u > (1 — €)ubm/p]. If v satisfies
v, = pAv+(m(z)—v)v withu > v and v(z,0) > 0, v(z,0) # 0 then u —> pb[m/y].

Any solution of uy = gy Auy + (ay — vy ~ ayua)uy is a subsolution of uy = y Au+
(a1 —u)u, s0 u; —+< p8ar/p1). Thus, for any € > 0 and ¢ large, u3 is a subsolution of
uy = palu+ (az + (1 +€)Brpblar/p1] — u)u so if pari(as+ Pipblar/pm]) < 1, which
follows from (3.9), then us —< pab((as + (1 + €)Fyp18{as/p1])/pa) for any € > 0. It
then follows from the monotonicity and continuity properties of 8[m] with respect to
m that uz =< pablas/pa + (B /1a)8las/m]). Since aa/ps < a1/pq we have
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ug =< pablay oy + (Brpaa/1s)0[ar/p]] =
= p3(1 4+ Prpa/pa)fas/ p] (3.12)

= (pa + Puyu )0[as/ ).
Hence, u; is eventually a supersolution to
u = pAu+ (a1 ~ (1 — e)en(ps + By )0ar/ ] — w)u

for any € > 0 so
ur = 2 (1 ~ (s + Brpr)/ 112))0lar / 1]
= (i — aypa — ay Py )0 ar /.

Finally, u3 is a supersolution for any € > 0 to
up = pgAu + (az + (1 — ) fi{pr — enpes — an fyp)8as/ pa] — w)u

so
uz —+2 pab[(as + (B — erfapis — en i )0[ar/ pa])/ pa). (3.13)
If ui —+> v; for any nonnegative nontrivial solution (uq,us) to (3.9) then the set
{(u1,u2) : u; > v;} contains a global attractor for such solutions and hence for any
coexistence state (u},uj) we have u} > v;. Together with the corresponding result for
the opposite inequality this yields the conclusions of the lemma.

In principle it is possible to continue the iteration of estimates of the forms (3.12),
(3.13), and so on; but in practice the estimates become very complicated in the general
case. The reason is that for A < B it is possible to get explicit estimates 8{A+g(z)] <
0[B + g(z)] of the type used in {3.12) but there seems to be no correspondingly
simple explicit estimate for the constant K such that K0[A + g(z)] > 6[B + ¢{(z)],
which is what would be needed to put the estimate in (3.13) into terms of 8[a;/p;].
There will always exist such a constant K by the strong maximum principle, and K
can be estimated in certain special cases, as in [1,9], but in general the dependence
of K on Q) and the coefficients of (3.9) will be complicated. In the special case
a1/p1 = a3/ ps the estimate in (3.13) converts to an estimate in terms of §[a;/y;] and
we may continue the iteration. It turns out that for this special case the method used
in Lemma 3.5 can completely characterize the dynamics of (3.9), while the general
case requires some other ideas as well. For simplicity we shall state the next lemma

[

for the case py = p3 =1, ay =az=a > py, although the results can be extended to
a1/ p1 = aa/ps.

Lemma 3.6. Suppose that gy = p3 = 1, that a; = a3 = a > py, and that 1 — oy —
a1 > 0. Then the coexistence state (uj,u3) = ({(1 — a1)/(1 + e1f1)}0]a], {(1 +
£1)/(1 + a1 5,}0[a]) is a global attractor for nontrivial nonnegative solutions of (3.9).

Remark: The conditions on the coeflicients imply that the hypotheses of Lemma 3.5
are satisfied.
Proof: We follow the proof of Lemma 3.5 up to (3.13) so that for any nontrivial
solutib‘n i(ui;us) we'have
L '. ur —< 0[a]
R " uz —< (1 4 51)0[a]
up =2 (1 -1 ~ a161)0[q]
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and from (3.13)

ug — 2 0a+ (B — a1y — o f7)0]a]]
= (14 f1 — arfh — a1f33)0]a).

We may continue the iterated estimates based on Lemma 3.1 and the theory of sub-
and supersolutions as in the proof of Lemma 3.5 to obtain

U — < fla—ar(l+f —a1fr — a1 f})0[d]]
=1-a(l+ b —erfy — euf})bla]
=(1 - a1 — a1 + i fy + aiff)0]a]

so that

uz — < Ola+ fi(l— or — anfy + o2 By + a3f?)6]a)
= (144l - a1 — nfy + o3 py + &} B7))0[a]
= (14 f — aafy — B} + &6} + o3 37)01d],

and so on. After n iterations the estimates for u; be written for n even as

up = < {(1—on) —afi(l — o) + (1 — ) — .ot
—ef 7 AP7H1 = an) + of A7} 6]d]

1 (3.14)
={(1 = a1)Y_ (=1)* (s p1)* + o} B }0[a]
k=0
and for n odd as
n-1
u =2 {(1- al)kg(—nk(a]ﬁl)k — o} f7'}0[a]
while those for u; may be written for n = 2m as
4 < {(1+ B) Y (1)1 1)*}la]
k=0
(3.15)

n+41
ug =2 {(1 + A1) Y (~1)¥(en$1)*}9[a].
k=0
Since a;f; < 1 by hypothesis the summations in (3.14) and (3.15) all converge as
n —+ 00, and we obtain

u =< {(1 ~a)/(1 + cafi)}al,
uy =2 {(1 — a1)/(1 4+ c1p1)}9(d]

so that uy — {(1 — a1)/(1 + c151)}0[a] and similarly uz — {(1+ £1)/(1 + a1 51)}0]a],
so that u} = {(1 — a1)/(1 + a1f1)}0a], w3 = {(1+ B1)/(1 + c11)}0]a] is 2 global
attractor for nontrivial nonnegative solutions.

Remarks. Similar sorts of iterations have been used to estimate coexistence states
in competition models [4,31,37] or to study uniqueness of coexistence states in some
predator prey models as in [31] and in some of the references therein. We need the
additional information that the coexistence state is a global attractor to rule out
_periodic solutions or other more complicated dynamics.
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Our results for the general case use the estimates of Lemma 3.5 in a crucial
way. We shall need to estimate the ratio u;/uy for large t. By the strong maximum
principle 0 < inf(u;/u3) and sup(u;/us) < oo over  for any fixed ¢ > 0. Simi-
larly, the supremum and infimum of 6[A(z)]/0[B(z)] are both positive numbers if
0{A(z)], 0[B(=x)] > 0 exist. For A and B constant, sup 8{4]/0[B] can be estimated in
terms of A, B, py, and (for the case of more than one space dimension) other geometric
quantities associated with §); see for example [1] or [9]. To state the next lemma we
define the following quantities arising from ratios of the 6[]’s occuring in (3.11):

Ky(a1, @3, iy, pt3, @1, 1) = (g1 — eapiz — anBapa) [ (pea + Pagr)
Ky(ay, a3, i1, 1, 1, 51, ) =
(11/pa) sup(Olas/p1] /6[(as + (Brper — a1 Prpts — ca fipa)Bar/ 1]/ ps]).
We have

Lemma 3.7. Suppose that the hypotheses of Lemma 3.5 are satisfied and that

< 24 ar B + 21T ¥ a1 By

(3.16)

I{]

2a?
(3.17)
- 2+C¥1,51—-2\/1+OI]BI
1\2 > 202
1

where I(;, K, are defined in (3.16). Then the system (3.9) has a unique coexistence
state (u},u3) which is a global attractor for nontrivial nonnegative solutions.

Remarks: For our purposes uniqueness of the coexistence state is not sufficient,
since we need to characterize the w-limit set of (3.9) and to do that we must also
consider the possibility of periodic orbits. Arguments similar to those used here are
also discussed in [1,9,30]. A criterion for uniqueness of the coexistence state given in
[30] that is similar in spirit to (3.17) but different in form is also sufficient for the
stronger conclusions of this lemma.
Proof. Lemma 3.5 implies permanence for (3.9) so by [8] there must be a coexistence
state (uj,u3) satisfying (3.11). Suppose that (u1,us) is any positive solution of (3.8)
and let p; = u; — ], ps = uz — uj. We have
Pie = mAp + (a1 — 4} — au3)p — wipr — cywips (3.18)
Pat = ptalpa + (a3 — uj + P1ui)ps + Pruspr — uaps
in xRy, py=p;=0o0n 090 x IR;. Since uj > 0 is a solution of the eigenvalue
problem

Y + (a1 —uf — equg)ip = o9

with o = 0, the principal eigenvalue must be ¢; = 0 and hence by the variational
characterization of eigenvalues we have

[1=u 1 99 P a1 - w5 = arug)?ldz < 0 (3.19)
for any ¥ € Wy3(), and similarly
/[—;L;, | 79 2 +(as — uj + frui)p?dz < 0. (3.20)
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Multiplying the ith equation in (3.18) by p;, integrating by parts, and using (3.19),
(3.20) yields

d r1
] (5 /ﬂ(Pf + P§)d$) < —/ﬂ(ulpf + (aruy — Prug)pips + uapf)dz.  (3.21)

If the expression inside the integral on the right in (3.21) is positive definite then the
conclusion of the lemma must hold. (If (p1,pz) — 0 in [L%(Q2)]? then since the system
(3.18) is parabolic with smooth bounded coefficients we must also have (p1,p2) — 0
in C9(R)) by parabolic regularity.) The quadratic form in (3.21) is positive definite if
(Brus ~ ayuy)? — dugug < 0, or equivalently

al(urfua)? — (2en By + 4)(wrfus) + BF < 0

which will be true provided u;/us lies between the roots of the quadratic afz? —
(201 8y +4)z + B2 = 0. Thus, the quadratic form in (3.21) is positive definite provided

J

) a9 v A R "
2 —2/1 A 24 oy +2/T T o

Vit af “ A i1,
502 < uifus < 502 ; (3.22)
but by Lemma (3.5) we have K3 —& < uy/uz < Ky +¢ for any € > 0 if ¢ is sufficiently
large, so that (3.17) implies (3.22) for large ¢ and the result follows.

Remark: The alternative estimates in the remarks following the statement of Lemma
3.5 could be used to give simpler or sharper but more complicated expressions for K,
and K.

For the analysis of the full semiflow with all three species present we shall need
some information about the linearizations of the system about certain equilibria in
the boundary ot the positive cone. In the case oI TWO COMPETITOrs the Nypouneses of
Lemma 3.3 already impose conditions on the linearized problem at (%;,0,0). Lemmas
3.6 and 3.7 also have consequences for the linearized problems at (%;,0,0) and at
(0,0,%3) (if the system has a predator equilibrium %; > 0 in the absence of prey),
but they are not stated explicitly in terms of the relevant eigenvalues of linearized
problems. We remedy that omission with the following: :

U A
el Vi

Lemma 3.8. Suppose that (u],u}) is a global attractor for nonnegative solutions of
(3.9) which are not identically zero in either component. The principal eigenvalue o9
of the linearized problem

s + [as + BiT]¢ =0 in
satisfies og > 0. If the system admits a positive equilibrium 3 satisfying pgsAus +
(a3 — U3)¥s = 0 then the principal eigenvalue oy of

1B+ a1 - aﬁalﬁ - g«ﬁ :1 %h (3.24)

satisfies o1 > 0.

Remarks: If (3.9) admits an equilibrium (u},u}) then necessarily there is an equi-
librium (%@;,0) but there may or may not be an equilibrium (0,%3). The eigenvalue
p1A1(ay) satisfies pyAi(a) < prdi(ay — aquy), but since uj is a positive solution of
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A+ [a; — cquf ~ uju = 0 we must have g1 (a; — aqud) < 1, s0 praAi(a;) < 1, so
u; > 0 exists. The presence or absence of 73 depends on the size of as.

Proof. Observe that 7; is a strict supersolution to pAuy + (a1 — oqul — ug)uy =0,
which has the solution u = u}; (alternatively u} is a strict subsolution to pyAu +
{a; — u)u = 0 which has a solution %) so it follows from the usual theory of sub-
and supersolutions together with the strong maximum principle that % > u} in Q
and Ou;/On < Buj/On on OQ. Since (uj, u3) is a global attractor for nontrivial
nonnegative solutions, we must have u; < 7; for large t for any solution (uy,us)
of (3.9) that is nonnegative and nonzero in both components. (Recall that we can
consider the semiflow on C{,(%2).) Suppose that oo < 0 in (3.22). Let ¢o > 0 be
an eigenfunction corresponding to g, and let (uy,u3) be any nontrivial, nonnegative
solution of (3.9), so that u; — u¥ as t — oo for i = 1,3. We have

% /n%ua = /n%[ﬂsAus + (as + Pruy — ua)us)
= /ﬂ[/lsA% + (a3 + A1t ) dolus
+/ﬂ[ﬂx(“1 — Ty} — us)ous

= /ndo¢o“3 + Bi(us — Ty )dous — ¢ous.

We have gggous < 0 and for some Tp > 0 we have vy — T < 0 and uz > (1/2)us for
t > Tp since u; — uf as 1 — oo and u < W on 2, duj/On > duy/0On on 0. Thus,
for t > Ty we have

d 1

—_— < - *\2 =

7 Jytors <=3 fyut = =0 <0
80

_/n¢o'lta L < /n%ua lTo — bo(t — To). | (3.25)

Inequality (3.24) implies /d)ous < 0 for large t, which is impossible since ug >
' Q
0, ¢o > 0. To avoid the contradiction we must have o > 0.

If 5 > 0 exists then we may observe that uj is a strict supersolution to pzAu +
(as -u)u = 0 so uj > 3. Hence, 1 — oquj < a3 — oW, s0 M@ — %) <
M@y = equs). Since the problem jiyAu + (a3 — aquj —u)u = 0 has a positive solution
u}, we have jiy Ay (a3 —cqud) < 180 pyAy(a; —anTs) < 1. That implies oy > 0, because
M(g/m) = maM(g) < 1if and only if the principal eigenvalue 0* of 1 Ad +q¢ = *¢
is positive. The last observation is based on positivity considerations: if p1A1(g) <1
but ¢* < 0, let ¢* > 0 be an eigenfunction for o*; then —pAw = agqw + h has
the positive solution w = ¢* with b = —o*¢* > 0 and @ > p1A(g), which violates
Proposition 3 of [21]. Thus if 1A1(q) < 1 we must have ¢ > 0. (A similar argument
yieldé the other direction of the equivalence, but we do not need that here.)

4 PERMANENCE FOR 2-PREY 1-PREDATOR SYSTEMS.
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We consider the question of permanence for a reaction-diffusion system modelling
two-prey one-predator interactions, the reaction terms being of Lotka-Volterra type.
As was mentioned in the introduction the case of zero Neumann conditions, corre-
sponding to no migration across 89, was considered in [14] and [26]. The interest
here is in investigating the much more difficult case when zero Dirichlet conditions
are assumed. Biologically this corresponds to the assumption that species may diffuse
across the boundary, but die out in the surrounding area. The main difficulty (which
was tackled in section 3) is to find reasonable conditions under which the w-limit set of
the boundary of the phase space (corresponding to the absence of at least one species)
is sufficiently simple to allow the conditions of the theorem to be checked - essentially
it must consist of equilibria only. Then we shall show that it is enough if the obvious-
ly necessary conditions, that these boundary equilibria repel into the interior, hold.
There are various possible combinations of equilibria which may yield permanence.
However, we do not attempt here to be exhaustive and give the argument only in
some typical cases. Other cases may be treated similarly. Some further discussion is
given in section 6. The case we treat in this section corresponds to a situation where
there are two prey and one predator species, one prey species would drive the other
to extinction in the absence of the predator, but with the predator present all three
species coexist. This phenomenon is called predator mediated coexistence.

Let 0 be a domain restricted as in section 2, and consider the following reaction-
diffusion system on  x :

Ou A
—B_tl = p1Auy + wi(ay — ur — Cratly — C13us), (4.1a)
au: '
= ‘ugA’UQ + UZ((lz - Cgql1 — Ug ~— 623113), (41b)
6u3

T palus + ua(as + enur + caruz — ua), (4.1c)

with zero Dirichlet conditions imposed on each component u; on 9. We shall in
fact assume throughout this section, without further comment that the boundary
conditions are always of zero Dirichlet type. We remark that so long as intraspecific
competition holds for each species, the coefficient of u; in the ith equation may be
taken to be unity without loss of generality since this may be achieved by a rescaling.

A number of conditions will be imposed on the system in order first to ensure that
the first two species behave like prey and the third like a predator, and second to
achieve permanence. In order to assist the reader some informal comments, referring
to Fig.1 will be made, this being intended to give a hint as to the direction of the
(infinite dimensional) vector field near the equilibria. The most difficult part of the
analysis is contained in section 3. There conditions are given which first ensure the
existence of a unique interior equilibrium P; (i.e. a coexistence state) in the u; — u3
face, and second its global attractivity (for orbits with w1, us initially non-trivial);
similar conditions are obviously sufficient for the equilibrium P in the up — u3 face.
Second, in section 3, Lemma 3.3 and Corollary 3.4, conditions are given ensuring that
there is no interior equilibrium in the u; — u (competing species) face and that A; °
is globally attracting (in a similar sense). There may or may not be an equilibrium
@ on the ug-axis. The arrow at P; indicates that orbits starting near Py with 4 > 0
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are pushed into the interior, and so are not attracted to P;; this is obviously a
necessary condition for permanence. The other arrows indicate the situation at the
other equilibria. The actual technical conditions yielding the directions of the vector
fields near equilibria involve the sign of the eigenvalues for certain Dirichlet problems;
for the corresponding Neumann problems these conditions reduce to assumptions on
the signs of coefficients in (4.1). Consider then the following conditions.
(C1) All the p;,ai,¢i5 are constants and

(a‘) ”i>0 (Z=17273)

(b) >0 (4,5=1,23,i#j)
(C2) Let p1, ¢1 be the principal eigenvalue and eigenfunction respectively of —A on
Q, and assume that

(a) a1 > ppn

(b  az> jam.
It is clearly equivalent to assume that oq,02 > 0 where o; the largest eigenvalue of

pilldy + aigy = oy ‘ (4.2)

From Lemma 3.1 these conditions ensure that there are unique equilibria (7,0,0)
and (0,73,0) on each of the u;,u; axes respectively and that these attract all orbits
except 0 in these axes.

We do not yet impose any restriction on the us-axis, but note that if a3 > pap
there will be an equilibrium ( in this axis whereas if a3 < jigp; there will be no such
equilibrium.

(C3)  The conditions of Lemma 3.3 or Corollary 3.4 hold, which implies inter alia
that the largest eigenvalue o3 of

1Ads + (a1 — 12T2)¢3 = 03¢a v (4.3)
is greater than zero.
Recall that it follows that (%;,0,0) is globally attracting in the w; — u, face if uy # 0
initially.
(C4)  There are unique globally attracting equilibria Py(i,0,1s) in the interior of the
uy — ug face and Po{0,u3,u}) in the interior of the uy — ug face. Sufficient conditions

are given by Lemmas 3.6 and 3.7. It follows from Lemma 3.8 that o4 > 0 and o5 > 0
where o, and o5 are the largest eigenvalues of the {ollowing problems:

3@y + (as + e )da = 04045 (4.4)
pslds + (as + carlla) s = o5P5. (4.5)

If @3 > pam so that Q = (0,0,%;) with @3 > 0 exists then Lemma 3.8 also implies
that og > 0 and g7 > 0 where o and o7 are the largest eigenvalues of the following
problems:

1 Dds + (a1 — e13T3)d = oede; (4.6)
12y + (a2 — o33 Pr = o767 4.7

Hypotheses C3 and C4 are really just conditions on the dynamics of the pairwise
interactions between species. By C3, the first competitor excludes the second in the
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absence of the predator. By C4, the predator can coexist (at a stable equilibrium)
with either of the prey species.

(C5) Let og and o9 be the largest eigenvalues of
mAds + (a1 — cr12uj — e13u3)ds = 0gs; (48
palAdg + (az — cnlly — Coalia)do = ooy, (4-9)
and assume og > 0 and 09 > 0.
Condition (C5) ensures that near P, when u; > 0 the vector field points inward
toward the interior of the positive cone, and that an analogous condition holds near
P,. The biological interpretation of {(C5) is that each equilibrium with the predator
and one prey species present is unstable relative to the other prey species; i.e. if the
predator and one prey are at equilibrium and a small number of the second prey are
introduced then the second prey species increase in numbers. This is known in the
biological literature as “invasibility,” as it means that each prey species can invade a
region in which the predator and the other prey are at equiblibrium.
Theorem 4.1. Under conditions (C1)-(C5)

in the sense of Definition 1.1.

Proof. Dissipativity follows easily from Lemma 3.2, so we can apply Theorem 2.5
directly. Observe next that the assumed conditions imply that the w-limit set of
the boundary consists exactly of the equilibria 0, A;, A2, Pi, P, and @ (if this exists).
Thus the plan is to take the isolated covering {J M, (described in section 2) to be
these points themselves. We must show

(i) that this covering is isolated,

(ii) W*(M,) N Y, = B, and (iii) that the covering is acyclic. To establish (i) and (ii)

N e e e B Tt L
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Lemma 4.2. Suppose f € C*f,R) and u > 0. Let A be the largest eigenvalue
(with corresponding eigenfunction ¢) of the problem

uhb + flz)d = Ao, (4.10)
and assume that A > 0. Suppose that for some ¥ > 0 and ¢ € (0, A), u satisfies the
following in a neighborhood U of 0 in C} +("ﬁ):

B >yt [f() - elu,

¢ (4.11)
u(z,0) 2 kb(z) (= 7).
Then for u € U,

u(z, t) > keP=Vg(z).

Proof. With v(z,t) = ke®*~9g(z),
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{5 o= ) - etel - {ZF - - 1) - v}

=1 pau () - 1} — keO= (A — [(2) — A14)

=0,

by (4.10) and (4.11). The result follows from a standard comparison principle. (We
are working in Cj, but the result is still valid in Cg, ().)

We need to prove (i) and (ii) for each equilibrium. The proofs are essentially the
same with only minor differences so it will be enough to illustrate by considering a
typical calculation, and we choose the point A, for this purpose. To prove that A,
is isolated we must show that there is a neighborhood of A; which does not contain
a full orbit (other than A; itsclf). We shall argue by contradiction and assume that
every neighborhood of Ay contains a full orbit.

Suppose first that such an orbit lies in the uy-axis in a small neighborhood of 4,,
and note that by (C2) A; is a global attractor for all orbits in the axis except 0.
Then by compactness its c-limit set is non-empty and disjoint from A, (since this is
attracting.) But the existence of the a-limit set contradicts the attractivity of A;.
Assumption {C3) shows by a similar argument that such an orbit cannot lie in the
u; — ug face. Thus if such an orbit exists, for any point of the orbit uz > 0 (z € ).
We shall show that such an orbit exits from every sufficiently small neighborhood
U7 of A,. For by the strong maximum principle, for any full orbit with uz > 0 and
ug # 0 -we must have us(z,1) > k(t)ps(z) for some k(t) > 0; in particular there exists
a k > 0 so that on us{z,0) > k¢4(z) for z € (1. (Here ¢4 is the eigenfunction defined
in (4.4)). It is clear from (4.1c) that for any given value of ¢ > 0 we can choose a
neighborhood U/ of A; = (71, 0,0) so that in U, —a-a%é-—;tgAua—u3(a3+caﬂl —-e) 2> 0.
Choose € € (0,04), then choose such a neighborhood U. It follows from Lemma 4.2
that ug must increase until (14,2, u3) exits U, so that U cannot in fact contain a
full orbit. Therefore A; is isolated. A similar argument shows that W?(A,)NY, = 0,
since at any point of Yp sufficiently close to A; the component uz must increase so
(1,9, u3) cannot approach A, along W?*(A;).

The final step in the proof is to rule out the existence of a cycle in the boundary
as defined in section 2. We shall give the proof for the slightly more difficult case
when there is an equilibrium @Q in the us-axis. We first note that by (C4), P, and
P, are attracting and so clearly cannot form a part of a cycle. Also by (C2) and
(C4) the origin 0 is repelling and so also cannot form part of a cycle. Thus only
Ay, Az and @ need be considered. However, any orbit in the u; — u3 face (apart from
the axes) is attracted to Py, which as remarked above cannot be a part of a cycle.
Thus A, cannot be chained to itself, Q to itself, nor can A; and @ be chained by an
orbit in the u; — us face. Similar remarks apply to the uy — us face. The only other
possibility is that A; and A, are cyclic. But this is obviously impossible as by (C3)
A, is globally attracting in the u; — up plane. This rules out the existence of a cycle
and completes the proof of permanence. The same sort of argument applies when
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there is no predator equilibrium @; that case is actually slightly simpler since there
is one less equilibrium to consider.

In general conditions {C3)-(C5) may be difficult to check analytically. However,
in the special cases treated in Corollary 3.4 and Lemma 3.6 we can find sufficient
conditions for permanence in terms of the coefficients of the system. We collect the
hypotheses as follows:

(CG) pi=1, a=a>p, i=12]3
cia<l<en

ca<l, cacai<l, 1=12

c12(1 ~ €23) + e13(1 + €e32) < 1+ eoacan
e21(1 — ¢13) + e23(1 + ca1) < 1+ cuaem

{(Recall that p; is the principal eigenvalue for —~A¢ = p¢.)

The first condition is imposed to facilitate computation. Under that condition, the
next two conditions in {C8) are the hypotheses of Coroilary 3.4 and Lemma 3.8, and
they imply (C2), (C3), and (C4). The second condition implies that u; will force u;
to extinction in the absence of ug by virtue of superior competitive ability. The third
condition implies that either u; or u; alone could coexist at a unique equilibrium
with the predator us. The last two conditions imply that each equilibrium with
only one competitor and the predator present is unstable with respect to the other
competitor, that is, that (C5) holds. Under the hypotheses of Lemma 3.6 we find that
ud = [(1 — coa)/(1 + coacaz)}0a), = [(1+ caz)/(1 + caacaz)]0[a] (recall the definition
of 8[m(x)] immediately following formula (3.8)), so that (4.8) becomes under (C6)

AL .t re /1 I N R T A N 72 T TR | /| 9 L 1F S | ' {4 19)
EAWPE T A T CL3) 3 MRS A | VLTINS 1 V4OVOL) )V \TIITE ~oro- [t

We note that the largest eigenvalue of A + (a — 8a})¢ = o¢ is o = 0 since for
o =0, 6[a] > 0 is an eigenfunction. It follows from monotonicity of eigenvalues that
the largest eigenvalue of A + (a — 60[a])¢ = o is positive if § < 1 and negative if
§> 1. Using § = (c12(1 —ca3)+e1a(1+c32))/(1+caacaz) we see that § < 1 is equivalent
to the fourth inequality of (C6), so that (C6) implies g5 > 0 in (4.8). Similarly, the
last inequality in (C6) implies o9 > 0 in (4.9), so (C5) holds and thus Theorem 4.1
yields the following:

Corollary 4.3. Under condition (C6) permanence holds for the system (4.1) in the
sense of Definition 1.1. o

Remark: It is not too difficult to verify that the algebraic conditions of (C6) are
satisfied for values of a, ¢;; lying in some nonempty open subset of RY.

5. PERMANENCE FOR THREE COMPETING SPECIES.

In the previous section an application of Theorem 2.5 was given. We now turn to a
situation where this theorem does not appear to be applicable since it does not seem
to be possible to find an acyclic cover of w(8Y,). The model was originally studied in
an ordinary differential equation context, see [36], [40] and [25], and it is then possible -
to give a sharp condition for permanence. This is also the case for a reaction-diffusion
model when homogeneous Neumann conditions are imposed; a proof may be given
by an amendment of the argument in [26], see also the remarks in [27, Chapter 4]. -
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The problem is a great deal more difficult under homogeneous Dirichlet conditions.
Here we shall consider a rather special case and present the best result we are able
to obtain. Some general remarks concerning the status of this problem are made at
the end of this section.

Consider the system

Ou

-a—tl = plwy + v (1 — vy — aug — Bus), (5.1)
_B_az% = pAug + uz(l — uz — oug — Puy), (5.2)
% = ptAugz + uz(1l — uz — auy — Pug), (5.3)

with u = 0 on 9. Assume that ¢ > 0 and 0 < @ < 1 < . The structure
of the nonlinearity is admittedly rather special; however, special cases of this type
have played a major role in the development of our understanding of Lotka-Volterra
models as in [3,9] and even appear in the biological literature as in [36,41). In order
to construct an appropriate average Liapunov function, certain eigenvalue problems
must be introduced.

Let p; be the principal eigenvalue for the problem

~A¢ = pé (5.4)

with ¢ = 0 on 8Q. Then by Lemma 3.1 the assumption p < pi?! insures that there
exists a unique steady state (%, 0,0) with Z > 0 on the semi-axisu; > 0, uz =uz =0
which is a global attractor for all initial values on this semi-axis. Thus @ satisfies

pAT +7(1 —7) =0 (5.5)

with @ = 0 on 9. Now let o, ¥ be the largest eigenvalue and corresponding eigen-
vector respectively for the problem

pAY + (1 — o) = o (5.6)
with ¥ = 0 on 99, and assume that o > 0.

The application of Theorem 2.4 to give a suflicient condition for permanence is
next considered. Recall that the set S defined in section 2 consists essentially of a
part of the three ‘faces’ obtained by setting w; = 0, uz = 0 and u3 = 0 in turn. As
average Liapunov function take

3
P(v) = I‘I/dev,-dm

= exp {i log /Q't,lvv;d:c} ,

==l

where 1 satisfies (5.6). From (5.7) computation yields

Ijngq;i)) - exp{ [)td;, [‘; /Q Pydz/ /n y;u;dm”. (5.8)

It is necessary to take certain limits as v tends to points in w(S5). Here only the




526 Cantrell, Cosner and Hutson

formal stages in the argument are presented; in view of the smoothness of solutions

of reaction-diffusion systems proofs are not difficult to supply, and they are given

in detail in [8]. Note that from Lemma 3.3 and Corollary 3.4, w(S) consists of four

equilibria, the origin and the equilibria (%,0,0), (0,%,0) and (0,0,%) on the axes.
For (%, 0,0) we have from (5.1)

(n ,uz,u;.)_.(ug /'1/'1’11(1'1 //1/’1,1(11

= limin{ /1/ [pAvy + v (1 — vy — avg — ﬁv;,)]dm//;)'t/mlda:

(n Uz.v'x)—°(n.0 0)J§;
=0
from (5.5). Also, using first (5.2) and Green’s Theorem,

limin{ /l[’?’ZLd’l//T/)I’g(l'D

{1 19,03 )~ {10, 04.,04) /T

= liminf /1/»[;1Am + vo(l — vg — avy — ﬂ'vg ]d:v// Puadz

(v1,w2,u3)—(T,0+.0+)

= liminf /2»2[/1Adv + P(1 — vy — avg — ﬂvl](l:v//;zd»vgdz

(v1v2,13) = (T04,04) JQ
= liminl [ w[uAp »1-#1;:/-,d
im il Q'lz[[l i+ (1 — Bu)|dw/ Qx/vg i

=0+ 1 m mf (~ ) / ¢v1)211111// Pugde, : (9.9)

where the last step follows from a rearrangement of the term in the square bracket
and use of {5.6). The second term in the last equation is evidently

(a—ﬂ)hmsup/ 1/’1»31“11'// Pugdz.
Uz -0

The lim sup term is clearly not greater than || @ |lo. On the other hand this maximum
value is certainly attained, for vy could tend to 04 through a sequence of smooth
functions with successively smaller supports in a neighborhood of a point where U
has its maximum. Thus the contribution of this term is (o — 8) || @ [lo, and the right
hand side of (5.9) is ¢ — (8 — a) || @ ||o. A similar calculation for the last term in the
sum in (5.8) shows that its contribution is ¢. Thus

liminf dogde/ | pvdz =20 — (B~ a) [T o
3 fys |

(v1,v2,u3)—(77,0,0) ’

From the symmetry of the system (5.1)-(5.3) the calculation is analogous for the other
equilibria on the axes. The origin (0,0,0) also lies in w(S), but an easy calculation
shows that its contribution to the square brackcted term is always positive. Also
a simple argument using super solutions shows that (I12) and (H3) hold. Finally
applying Theorems 2.4 and 2.7 we obtain the following result.
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Theorem 5.1. Suppose that (IT1)(h) holds, and assume that 0 < g < p7' and
0 < @« <1 < f. Then the system (5.1)-(5.3) under zero Dirichlet conditions is
permanent if ‘

2 — (p—a) || 7 o> 0, (5.10)
where ¥ is defined by (5.5) and o by (5.6).

For the reaction analogue of (5.1)-(5.3) the condition a + 8 < 2 is known to be
necessary and sufficient for permanence, see {40}, and it is possible to prove that
this is also the case for the reaction-diffusion system (5.1)-(5.3) under zero Neumann
conditions. It is therefore of interest to enquire how near (5.10) is to being a necessary
condition. If y¢ — 0, clearly @ — 1 (in L;), and the condition @ + 8 < 2 is recovered
from (5.10), which is thus near to sharp for small g. However, if i is not small it
is unlikely that (5.10) is sharp. It seems likely that to obtain a sharp condition a
much more clever choice of average Liapunov function is necessary, and we have been
unable to make any progress in obtaining such a function.

From a different point of view, if ;¢ is not small but p = (1 —¢)/p: where € is small
{p1; ¢ being defined by (5.4)), a simpler form of (5.10) may be obtained. A formal
calculation shows that (5.10) becomes to first order in ¢,

2(1 —a)— (B —a)k >0, (5.11)

where

E=llelo/ [ 4.

It would probably not be hard to justify this rigorously, but (5.11) is perhaps of rather
limited interest, so we shall not pursue this point further here. Some related results
in a different context are obtained by local bifurcation theory in [4]; see also [15].

Finally, one might consider taking a more general system than (5.1)-(5.3), for
example by considering unequal diffusion rates. Although some progress may be
made along the above lines, the resulting conditions are rather complicated, and it is
not easy to determine whether they would hold for a range of interest of the parameter
values.

6. GENERAL CONCLUSIONS.

The results of sections 4 and 5 demonstrate how the idea of permanence may be
used to study models for three interacting species with diffusion. An approach using
permanence or some related idea is probably necessary since even models for three
species without diffusion may have periodic orbits or 'perhaps even more complicat-
ed dynamics; see [25,36,40]. As noted in [8], permanence implies the presence of a
coexistence equilibrium, but in general the converse is false. Our results could be ex-
tended or refined in several ways. We have not attempted a systematic treatment of
Lotka-Volterra type models for three species, and have not even considered more com-
plicated models. In principle it would be possible to treat very general reaction terms
as is done for two species in [8]; however, the analysis of section 3 and verification
of hypotheses analogous to (C3)-(C5) of section 4 become more complicated and less
illuminating in very general situations. Many forms of Lotka-Volterra systems could
be treated by the methods of sections 4 and 5. In particular, systems with three com-
petitors in which some pairs of competitors have globally stable coexistence states
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could be treated as in section 4. Conditions under which dillusive Lotka-Volterra
models for twa competitors have stable coexistence stales are discussed for example
in [1,5,9]. 1t would be fairly casy to treal models with spatially varying coeflicients.
The main difference would he in the conditions involving cigenvalues, which would
in some cases become more complicated. We have chosen the specific examples we
have treated because they are mathemalically representalive and at least historically
of biological interest. The example of section 4 displays the biologically important
but somewhat counterintuitive phenomenon of predator mediated coexistence (see
[25]) in which two competitors can coexist only in the presence of a predator which -
controls the population of the superior competitor. The example of section 5 is a .
diffusive version of the model used in [36] to show that three competing species may
have periodic cycles. _

The hypotheses involving eigenvalues lead to elliptic problems that could be fur-
ther analyzed in several ways. For specific cases, numerical methods such as those
discussed in [13] could be used. Varions estimates of cigenvalues in terms of param-
eters conld he given as in [1-8,15,29,35,37]. Specific applications of that approach
to some ecalogical questions are discussed in [7}. Only in fairly special cases can
cigenvalue conditions be verified by simple algebraic computation. One such case is
characterized by hypothesis (C6).

There remain many open questions about the dynamics of reaction-diffusion mod-
cls for three interacting species, and about the techniques we have used to study them.
The examples we have treated show that approaches based on the idea of permanence
can be effective in translating dynamic questions into static ones, specifically elliptic
eigenvalue problems. Since eigenvalue problems have been widely studied and since
eigenvalues typically depend strongly on domain geometry, such a translation is.useful
in analyzing spatial cliects; see [5] lor more diSCUSSION. We nope WAL OUr WOrk winl
stimulate others to investigate other models or to study further some of the problems
we have considered here. ' '
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REFERENCES

1. S.W. Ali and C. Cosner, On the uniqueness of the positive steady-state for Lotka-
Volterra models with Diffusion, J. Math. Anal. and Appl., 168 (1992),
329-341. ‘

9. J. Billoti and J.P. LaSalle, Pcriodic dissipative processes, Bull. Amer. Math. *
Soc. 6 (1971), 1082-1089. ‘

3. J. Blat and K.J. Brown, Bifurcation of steady-stale solutions in predator-prey
and competition syslems, Proc. Roy. Soc. Edinburgh 97A (1984), 21-34.

4. R.S. Cantrell and C. Cosner, On the steady-state problem for Volterra-Lotka
competition model with diffusion, Houston J. Math. 13 (1987), 337-352.

5. R.S. Cantrell and C. Cosner, On the uniqueness and stability of positive solutions
in the Lotka-Volterra competilion model with diffusion, Houston J. Math.
15 (1989), 341-361. :

6. R.S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights:
populalion models in disrupted environments, Proc. Roy. Soc. Edinburgh
112A (1989), 293-318. :



Diffusive Lotka-Volterra Models 529

7.

8.

9.

10.

11.

12.

13.

14.

15.

18.

17.
18.
19.
20.

21.

22.

23.

24.

25.

26.

21,

28.

R.S. Cantrell and C. Cosner, Should a park be an island, SIAM J. Appl. Math.,
53 (1993), 219-252.

R.S. Cantrell, C. Cosner, and V. Hutson, Permanence in ecological systems with
spatial heterogeneity. Proc. Royal Soc. Edinburgh, to appear.

C. Cosner and A.C. Lazer, Stable coexistence states in the Volterra-Lotka com-
petition model with diffusion, SIAM J. Appl. Math. 44 (1984), 1112-1132.

E.N. Dancer, On positive solutions of some pairs of differential equations, Trans.
Amer. Math. Soc. 284 (1984), 729-743.

E.N. Dancer, On positive solutions of some pairs of differential equations II, J.
Differential Equations 60 (1985), 236-258.

E.N. Dancer, On the existence and uniqueness of positive solutions for competing
species models with diffusion, Trans. Amer. Math. Soc., 8326 (1991), 829-

859.

E.N. Dancer and Y. Du, Existence of positive solutions for a three species com-
petition system with diffusion, preprint.

S. Dunbar, K. Rybakowski, and K. Schmitt, Persistence in models of predator-
prey populations with diffusion, J. Diff. Equations 65 (1986), 117-138.
J.C. Eilbeck, J.E. Furter, and J. Lépez-Gémez, Coezistence in the competition

model with diffusion, J. Differential Equations, to appear.

W. Feng, Coexistence, stabilily, and limiting behavior in a one-predator-two
prey model, J. Math. Anal. Appl., to appear.

W. Feng and W.H. Ruan, Coexistence, permanence, and stability in a three
species compelition model, preprint.

P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture
Notes in Biomathematics 28, Springer, Berlin, 1979.

J.K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM
J. Math. Anal. 20 (1989), 388-395.

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes
in Mathematics 840, Springer, Berlin, 1981.

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with
an indefinite weight function, Comm. Partial Differential Equations 5
(1980), 999-1030.

J. Hofbauer and K. Sigmund, Dynamical Systems and the Theory of Evolution.
Cambridge University Press, 1988.

V. Hutson, A theorem on average Liapunov functions, Monatsh. Math. 98
(1984), 267-275.

V. Hutson, The existence of an equilibrium for a permanent system, Rocky Mtn.
J. Math. 20 (1990), 1033-1040.

V. Hutson and R. Law, Permanent coexistence in generel models of three inter-
acling species, J. Math. Biol. 21 (1985), 285-298.

V. Hutson and W. Moran, Repellers in reaction-diffusion systems, Rocky Moun-
tain J. Math. 17 (1987), 301-314.

V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems.
Math. Biosci., 111 (1992), 1-71.

P. Korman and A. Leung, A general monotone scheme for elliptic systems with
applications to ecological models, Proc. Roy. Soc. Edinburgh, 102A (1986),
315-325.




530

29.

30.

31.

33.

34.
35.

36.
37.
38.
39.
40.
41.

42.

43.

Cantrell, Cosner and Hutson

P. Korman and A.W. Leung, On the existence and uniqueness of positive steady-
states in the Volterra-Lotka ecological models with diffusion, Appl. Anal.,
26 (1987), 145-160.

Nela Lako#, Eristence of steady-state solutions for an one predator-two prey
system, SIAM J. Math. Anal., 21 (1990), 647-659.

A. Leung, Systems of nonlinear pnrfml differential equations: applications to
biology and engineering, Kluwer Academic Publishers, Norwell, MA, 1989.

L. Li and Y. Liu, Spectral and nonlinear effects in certain elliptic systems of
three variables, SIAM J. Math. Anal., to appear.

L. Li and R. Logan, Positive solutions to general elliptic competition models, J.
Diff. & Intg. Eqs., 4 (1991), 817-834.

Y. Liu, Positive solutions to general elliptic systems, preprint.

J. Lépez-Gémez and R. Pardo San Gil, Coezistence regions in Lotka- Volterra
models with diffusion, Nonlinear Analysns TMA 19 (1992), 11-28.

R. May and W.J. Leonard, Nonlinear aspects of competition between three
species, SIAM J. Appl. Math. 29 (1975), 243-253.

P.J. McKenna and W. Walter, On the Dirichlet problem for elliptic systems,
Appl. Anal., 21 (1986), 207-224.

X. Mora, Sem7lznear parabolic problems define semiflows in C* spaces, Trans.
Amer. Math. Soc. 278 (1983), 21-55.

W.H. Ruan and W. Feng, On the fized point indez and multiple steady-state
solutions of reaction-diffusion systems, preprint.

P. Schuster, K. Sigmund, and R. Wollf, On w-limits for competition between
three species, SIAM J. Appl. Math. 37 (1979), 49-54.

Y. Takeuchi, Y. Oshime, and II. Matsuda, Persistence and periodic orbits of a
three- compcmor model with refuges, Math. Biosci. 108 (1992), 105-125.

P. Wdltman A by zef survey of perszs{ence in dJn(zmzcal systems, pp. 31-40 in

1\-.,-....,...1 Cuerb mone n. nnnkn«n

Ubl(h‘y Ulllbxhllul(lt U\lukuul\.lll 1 \thu L P Lo e R R tattnatedhled
and M. Martelli, eds. Springer Lecture Notes in Math 1475 (1991)

H.F. Weinberger, Variational Methods for Bigenvalue Approzimation, Sociéty
for Industrial and Applied Mathematics, Philadelphia, 1974.



